Formulating PEO-Polycarbonate Blends As Solid Polymer Electrolytes By Solvent-Free Extrusion

Francesco Gambino^{a,b}, Matteo Gastaldi^{a,b}, Alia Jouhara^c, Samuel Malburet^d, Simone Galliano^e, Nicola Cavallini^f, Giovanna Colucci^f, Marco Zanetti^{g,h}, Alberto Finaⁱ, Giuseppe Antonio Elia^{a,b} and Claudio Gerbaldi^{a,b}

^a GAME Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy

^b National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze 50121, Italy

^c BlueSolutions, Odet, Ergué Gabéric, CEDEX 9, 29556 Quimper, France

^d SPECIFIC POLYMERS, 150 Avenue des Cocardières, 34160 Castries, France

^e Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via P. Giuria 7, 10135 Torino, Italy

^f Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino 10129, Italy

^s Department of Chemistry, SusPlas@Unito – Sustainable Plastic Scientific Hub, University of Turin, via Pietro Giuria 7, 10125, Torino (Italy)

^h Instm Reference Centre, University of Turin, Via G. Quarello 15A, Turin, 10135, Italy

^{*i*} Department of Applied Science and Technology (DISAT), Politecnico di Torino, V.le Teresa Michel, 5, 15121, Alessandria, Italy

Additional Figures and Tables

Figure S1. Different steps of the extrusion process. The starting materials (A) were introduced into the
extruder. After 15 minutes of mixing at 140°C and 130 rpm, the blend was extracted from the extruder (B).
The formulation was then hot-pressed to obtain the final self-standing membrane (C) 1
Table S1. Set of Experiments for DoE with the composition of the membranes produced and the three results
taken into account
Figure S2. TGA thermograms of the samples under N_2 from 0 °C to 600 °C
Figure S3. DSC thermograms under N ₂ from -50 °C to 100 °C with a heating rate of 10 °C min ⁻¹ 3
Figure S4. Scaled and centered regression coefficients plot for voltage, crystallinity, and conductivity models.
Model equations for i) voltage (mV) $y = 4.62 + 0.11*\%PEO - 0.20*\%PEO*\%PEO;$ ii) conductivity (S cm ⁻¹).
Log(y) = -4.67 + 1.94*%PEO - 2.04*%PEO*%PEO + 0.15*PC(PEC) – 0.15*PC(PPC); iii) crystallinity (%)
y = 14.62 + 19.79*%PEO
Figure S5. Arrhenius plots of ionic conductivities versus temperatures determined by EIS in the range of 0 –
80 °C for blended polymers

Figure S1. Different steps of the extrusion process. The starting materials (A) were introduced into the extruder. After 15 minutes of mixing at 140°C and 130 rpm, the blend was extracted from the extruder (B). The formulation was then hot-pressed to obtain the final self-standing membrane (C).

Table S1. Set of Experiments for DoE with the composition of the membranes produced and the three results taken into account.

Exp Name	PC	PEO	%PEO	Voltage (V)	Conductivity (S/cm)	Crystallinity (%)
N1	PEC	400k	0	4.13	3.22e-09	0
N2	PEC	400k	30	4.66	9.42e-06	0
N3	PEC	400k	70	4.51	3.4e-05	30.7
N4	PEC	400k	100	4.48	3.15e-05	37.0
N5	PEC	4M	0	4.13	5e-10	0
N6	PEC	4M	30	4.66	7.42e-06	3.0
N7	PEC	4M	70	4.51	1.43e-05	22.7
N8	PEC	4M	100	4.64	4.57e-05	35.9
N9	PPC	400k	0	4.42	5e-10	0
N10	PPC	400k	30	4.53	5.89e-06	0
N11	PPC	400k	70	4.54	3.4e-05	30.9
N12	PPC	400k	100	4.48	2.13e-05	29.0
N13	PPC	4M	0	4.42	8.19e-10	0
N14	PPC	4M	30	4.50	1.8e-06	0
N15	PPC	4M	70	4.65	2.98e-05	31.7
N16	PPC	4M	100	4.64	2.06e-05	33.4
N17	PEC	400k	70	4.63	2.83e-05	17.9
N18	PEC	4M	30	4.65	5.31e-06	0
N19	PPC	400k	30	4.38	1.28e-06	0
N20	PPC	4M	70	4.54	2.49e-05	21.6
N21	PEC	400k	50	4.66	4.58e-05	15.6
N22	PEC	4M	50	4.66	2.39e-05	1.31
N23	PPC	400k	50	4.66	1.36e-05	21.6
N24	PPC	4M	50	4.69	9.36e-06	18.6

Figure S2. TGA thermograms of the samples under N_2 from 0 °C to 600 °C.

Figure S3. DSC thermograms under N₂ from -50 °C to 100 °C with a heating rate of 10 °C min⁻¹.

Figure S4. Scaled and centered regression coefficients plot for voltage, crystallinity, and conductivity models. Model equations for i) voltage (mV) y = 4.62 + 0.11*%PEO - 0.20*%PEO*%PEO, (R²=0.56); ii) conductivity (S cm⁻¹). Log(y) = -4.67 + 1.94*%PEO - 2.04*%PEO*%PEO + 0.15*PC(PEC) - 0.15*PC(PPC), (R²=0.95); iii) crystallinity (%) y = 14.62 + 19.79*%PEO, (R²=0.82).

Figure S5. Arrhenius plots of ionic conductivities versus temperatures determined by EIS in the range of 0 - 80 °C for blended polymers.